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IONOSPHERIC REACTION RATES IN T I E  LIGHT OF R E C m  MEASUREMENTS 

IN THE IONOSPHERE AND THE LABORATORY 

I1 

University of Pit tsburgh, Pit tsburgh Pennsylvania 

[Received 1 

An attempt i s  made t o  obtain a s e t  of ion-molecule react ion rates 

and recombination coef f ic ien ts  consistent w Z t h  recent mass spectr-tr ic 

data obtained between 120 and 220 km, It is  found t ha t  the daytime ion- 

ospheric data at  130 km are explicable i n  terms o f t h e  processes 

3 
+ + 0 + NO+ + N N2 

O+ + N2 + NO+ + N 

at 5 x loo10 cm /sec 

at  4 x 10-12 cm'/sec 

+ + 
N2 + O + O  + N 2  

+ o  + 
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O2 + + N2 + 10' + NO < 4 x cm3/sec 
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3 
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e + N O + + N  o at  ' je2 x loo7 cm /sec 

~ + o + + o + o  at  1,2 x 10-7 cm /sec 2 

a l l  i n  good agreement with t h e  most recent laboratory data, 

To account for the ion densi t ies  at higher a l t i t u d e s  it is shown 

t h a t  many r a t e s  m u s t  have strong temperature dependenceso I n  pa r t i cu la r  

t he  O+ removal rates cannot increase wi th  temperatureandthe N 2  + 0 



/ 

ibn-atom interchange rate must decrease v i t h  increasing temperature, 

recombination coeff ic ient  f o r  10' decreases with electron temperature 

The 

-104 f 0.1 + -1 + -002 
88 Te f o r  O2 as about To &d f o r  N2 as about Te 

To account for  the n i a t t i m e  ionosphere w i t h  the reaction rates 

3Eplied by the daytime data is s h m  t o  require tha t  there be w e a k  

sources of ionization above 180 km and below 140 kin w i t h  rates of t he  

order of 5-10 ion pairo/cm 

exchange must be very rapid with a r a t e  of the order of 5 x 10-l' cm /set. 

3 + The data a lso  indicate  t h a t  O2 NO charge 

3 
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1, INTRODUCTION 

There now appears t o  be a consensus among laboratory experi- 

mentalists ('02) tha t  the  r a t e  of t h e  charge t r a n s f e r  react ion 

+ + 
IJ2 + O2 + O2 + N2 

at 300'K is of the  order of 2 x 

which is perhaps surpr is ing on theo re t i ca l  grounds is nevertheless a l l  

but indispensable t o  account f o r  the very hfgh r a t e  at which N2 

appears i n  the  E region during the daytime, 

channel f o r  removal of N2 

interchange react ion 

cm3/8eco* This large value 

+ dis- 
The only other  e f f ec t ive  

+ is through formation of NO+ i n  the  ion-atom 

+ + O + N O + + N , ,  N2 
L1 

A very low r a t e  f o r  the charge exchange process would place a very 8evere 

requirement on the ion-atom interchange reaction, 

of t he  f ac t  that  the charge exchange wi th  0 

This is a consequence 

cannot be permitted 

+ + 
N2 + O + N 2 + 0  

+ t o  go very rapidly i f  t he  0 removal i n  the  reaction 

* 
This note is a revised version of a paper which w a s  prepared when it 

appeared tha t  laboratory measurements were yielding a value of 

4 x 

attempted t o  show tha t  t h i s  measurement was incompatible w i t h  ion- 

ospheric data unless cer ta in  other rate coef f ic ien ts  were extremely 

large, 

author 

cm 3 /sec for  t h i s  r a t e  coef f ic ien t , (3)  The e a r l i e r  paper 

Copies of that  paper i n  report  form are avai lable  from the  

1 
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0' + N2-+ NO+ + N 

r 

1 

3 is  as slow as the  value ( 4  x 

ments have now se t t l ed ,  (3 0 4 )  

with the ionospheric requirement t h a t  t h e  N2 

than 

charge t r a n s f e r  r a t e  is very gratifying. Also encouraging t h e  observation 

tha t  t h e  N2 , 0 ion atom interchange rate is  very fast, 

cm /sec) on which laboratory measure- 

Since the laboratory data are a l so  consis tent  
+ 0 charge exchange be slower 

+ 
cm3/sec t h e  recent agreement on the high value f o r  t he  N2 O2 

+ ( 5 )  

These and a number of other important ion-molecule reaction r a t e s  

have recently been measured at room temperature, ( ' -5 )  

r e l i a b l e  values f o r  t he  room temperature r a t e s  f o r  d i ssoc ia t ive  recombin- 

(6s708) Using these at ion of N2 , O2 and NO+ are being obtained also, 

values at 300°K as a basis it i s  in t e re s t ing  t o  determine what sort of 

temperature dependence f o r  reaction rates would be required f o r  consist-  

ency wi th  recent ly  obtained densi t ies  of ion ic  species i n  t h e  E and F 

Increasingly 

+ + 

regions.!p) It is i;--gose cf *.tis znte te shnv +.hat the laboratory 

react ion rates are consistent w i t h  ionospheric conditions i n  the daytime 

near  130 km where the  gas temperature i s  not much higher than 300°, 

i s  t h e  fu r the r  purpose t o  extend the analysis t o  higher a l t i t udes  and 

show within broad limits how these rates must vary with  temperature t o  

be consis tent  with ionospheric observations up t o  220 km i n  the daytime. 

Although it w i l l  not be possible t o  f i x  on a s ing le  unique s e t  of 

temperature dependences a number of qua l i t a t ive  predict ions w i l l  be 

forthcoming, 

r a t h e r  firm statements about temperature dependence w i l l  be possible,  

The dens i t ies  o f t h e  ionic  species from 130 km t o  220 km have 

It 

With regard t o  dissociat ive recombination r a t e  coef f ic ien ts  

also been measured a t  night69) It w i l l  be shown t h a t  t he  a l t i t u d e  pro- 

f i l e s  of these dens i t ies  cannot be accounted f o r  by simple decay of 
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ionization v i a  ion-molecule and dissociative recombination, I n  f ac t  

the data w i l l  be shown t o  be explicable i n  t e r n  of w e a k  nocturnal 

ionization sources i n  the E region and F region -- i n  prtrtfcubar ioniza- 

t i o n  by electron impact, 

narrow range of poss ib i l i t i e s  out. of t h e  broad spectrum of temperature 

dependences f o r  reaction rates le f t  from the  daytime analysis, 

The nsctmet’l conditions d s o  serve t o  s e l e c t  a 
.. 

An obvious caveat should be entered before any comparison of 

rates measured i n  t h e  laboratory and those applicable i n  the  ionosphere 

is madeo This  is t h a t  the states o f t h e  ions and molecules observed 

may not be the same i n  the  two places, What i s  taken t o  be evidence 

fo r  temperature dependence may be i n  pa r t  evidence f o r  a var ia t ion i n  

a l t i t u d e  and t i m e  of t he  re la t ive  population of s t a t e s ,  It i s  a lso  

necessary t o  bear i n  mind the large experimental uncertaint ies  s t i l l  

a t tach  t o  most of the measurements under discussion, The t i m e  has 

cer ta in ly  not arr ived f o r  a def ini t ive snalysis ,  An observation most 

ser iously lacking, f o r  example, is one that  wouid give a chrect measure- 

ment of the  t o t a l  rate of ion production as a function of a l t i t ude ,  

2, I O N I C  CH.EMISTRY 

Pr ior  t o  the publication of t he  latest  series of laboratory 

react ion rate measurements by the group a t  the  National Bureau of 

5, and the  ionospheric m a s s  spectrometer observations a t  

NRL 9 several  exhaustive reviews o f t h e  chemistry of the ionosphere have 

been publishedo (lo&’ 

those papers and w i l l  not be discussed hereo To systematize somewhat t h e  

notat ion atomic and molecular species, whether ion or  neutral  w i l l  be 

designated by number, 0 or  0 being 1, 2; 02, 3; NO, 4; and N, 5 0  

The basic  chemistry is set for th  adequately i n  

* 
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The ion-molecule reaction r a t e  coeff ic ients  w i l l  be wr i t ten  (ij ,k) where 

i denotes the  ion before co l l i s ion  and k the ion afterward, 

concentration [ X I  o r  N ( X )  the  chemical symbol X w i l l  be employed and the  

product of concentrations wr i t ten  XoY t o  dis t inguish it from the  symbol 

XY f o r  t he  moleculeo 

For the  

The following are the reactions which transform 

0+: 

0 + + N  2 + N O + + N ,  (12.4) 
+ 

(1393) 0 + + 0 2 + 0 2  + o  

02+ : 

+ + N + NO' + NO (3294)  

+ + NO + 10' + (I 
O2 2 

O2 (34 ,4 )  2 

N+ 0 

+ + N  ( 5 3 p 3 )  
+ 

N + O2 + O2 

N + O2 * NO+ + 0 ( 5 3 9 4 )  + 

The dissociat ive recombination r a t e  Coefficients w i l l  be designated 

f o r  O2 and a f o r  NO+, The ion production r a t e s  by photons + + 
2 O 3  4 a2 f o r  N 

and photoelectrons w i l l  be w r i t t e n  as Qio 
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Since t h e  r e v i e w  by Paulson12 a large number of new determina- 

t i ons  of r a t e  coef f ic ien ts  has been madeo In  t h i s  paper the following 

values from the  laboratory a re  adopted as guides f o r  se lec t ing  r a t e s  

at 30o0K, 

(15 
(23,b) % cm3/sec 

a, = 3 x 10-7 cm3/sec (6 1 
2 x 10-7 crn'/sec (7) 

- 
a 

a4 4-20 x lom7 cm /sec 
3 

3 (17) 

The dens i t ies  of the pr incipal  ion ic  const i tuents  of t he  upper E 

and lower F regions have recently been obtained mass spectrometrically 

i n  the  daytime and i n  the nightime, (') The r e s u l t s  are  shown i n  Table 1 

at a l t i t u d e s  of 130, 140, 160 and 220 km, Because the  sum of the ion 

dens i t ies  w a s  less than t h e  electron dens i t ies  up t o  about 160 km where 

0' began t o  be the  dominant ionic  species the  measured values of molecular 

ions were a r b i t r a r i l y  multiplied by a fac tor  of 1,75 i n  the table, This 

was done t o  render the calculation self-consis tent  and has no qua l i t a t ive  

e f f e c t  on the  pr inc ipa l  deductions i n  t h i s  paper, 
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The s a l i e n t  features  of the  observations are the  low values of 
+ + N2 dens i t ies  i n  the  daytime and the near equal i ty  of O2 and NO+ densities 

at all a l t i t udes ,  A t  n ight  t he  

pers is tence of NO+ at low a l t i t u d e  is s t r ik ing ,  Only NO and O2 are 

observed below 200 km, While the  density of O2 is  low and v i r t u a l l y  

independent of a l t i t u d e  up t o  190 km, t he  NO+ density is  very high near 

125 km, decreases t o  a minimum at 170 km, then rises again, 

density increases sharply above 200 km along wi th  t he  NO+ and O2 

dens i t ies  so tha t  by 200 km, O+, NO+ and 0 

The appearance of a measurable quantity of 28' above 200 km at  night i s  

a surpr i se  if it is ionospheric N2 

which dispose of t h i s  ion i n  t he  day timeo 

0' becomes predominant above 180 km, 

+ + 
+ 

The 0' 
+ 

+ are equal i n  abundance, 2 

+ i n  v i e w  of t h e  rapid removal processes 

"here are a l so  avai lable  now mass spectrometric values f o r  t h e  

dens i t ies  of t he  neut ra l   specie^,(^^^^^*^^' These a re  tabulated i n  Table 1. 
120) 

On t h e  basis of these  dens i t ies  Zipf has reevaluated the  r a t e s  of 

photoionization, t sk ing  i n t o  account a l so  the ionizat ion by energetic 

photoelectrons, H i s  results f o r  the ionizat ion r a t e s  f o r  t h e  solar zenith 

angle which exis ted at the  time of the  observations a re  a l s o  shown i n  the 

table 

In  the  absence of s ign i f icant  diffusive flow 

I + 

+ + + (24,4) N20N0 + a2 NZ0Ne 
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One of these relationships m a y  be replaced by 

Qi = (a2 N2 + + a3 0; + + a NO') Ne 
4 

3e THE IONOSPHERIC CONDITIONS: DAYTIME 

(5) 

In the steady state insertion of the observed ion and neutral 

densit ies  and Zipf's ion production rates into Eqs, (1-5) yie lds  the 

following relationships, 

For N2 + 

at 130 km: 2[(21,4) + (21,111 + [(23,3) + (23,411 = 12,6 x 

at 140 km: 301 [(21,4) + (21,1)1 + [(23,3) + (23,411 = 11,5 x lom1' 

(6) 

(7) 

at 160 km: 6[(21,4) + (21,111 + [(23,3) + (23,4)] + 3 x loo4, = 19 x 
2 

(8) 

at 220 km: 23[(21,4) + (21,111 + [(23,3) + (23,411 + 1,2 x loo2 a2 

= 41 x 

(9) 
For 0' 

at 130 b:28 (12.4) + 2,8 (13,3) - (21,l) = 2,2 x 

at 140 km:32 (12,b) + 209 (13,3) - (21,l) = 1,6 x 
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at 160 km: 66(12,4) + 503 (13.3) - (214) = 106 x (12) 

at 220 km: 192 (12.4) + 10 (13,3) - (21,l) = log x (.13) 

For NO+ 

4 6 at  130 km: a = 1,70 x 10 (12.4) + 610(21,4) + 1,26 x 10 (32.14) 4 
+ 1615 x 102(34,4) + 42 (53,4) 

at 140 km: a = 2,3 x 10 (l2,k) + 730 (21,h) + 3e7 x lo5 (32,4) 

at  160 kmo a4 = 105 x 10 (l2,4) + 240 (21,k) + 2,8 x lo4 (32.4) 

at  220 kmn a4 = 3*6 x 10 (12.4) + 190(21,4) + 1,1 x lo3 (32.4) 

(14) 

(15) 

(16) 

(17) 

4 

4 

4 

4 

+ 
From CQi = C a N i i Ne 

at 130 km: a4 + lob a = 6,8 x loo7 
3 

at  140 km: a4 + 1,1 a = 5 , O  x loo7 3 
a t  160 km: 1.6 a4 + a + 0.02 a2 = 2,l x loo7 3 
-A nnn L-- .In a R  .I A17 
a.c, ccu Ui AU “4 T I u3 U2 = 7 0 5  AU 

+ ,-- - .  T&e ii and O+ conditions may be combineci tt eiimirrate i i i i , i i s  
2 

The resul t ,  neglecting (23.4) compared t o  (23.3) is  

130 km:(21,4) + 28 (12.4) = 8,5 x - 2,8 (13.3) - 0 0 5  (23,3) (22 1 

(23) 

2 
(24) 

140 km:(21,4) + 32 (12,4) = 503 x 

160 kmr(21.4) + 66 (12,4) = 4,8 x loD1’ 

- 209 (13,3) - 0032 (23.3) 
(13,3) - 0,17 (23,3)-5~10’~ a 

220 km:(21,4) + 192(12,4) = 304 x - 10 (13.3) - 4,3 x loo2 (23.3) 

- 502 x 10-4 a (25) 2 

It is a lso  possible t o  rewrite the conditions (14-17) on a4 t o  read 

6 130 km a = 5,2 x loo7 + 1026 x 10 (32,4) + 1015 x lo2 (34,4) + 42 (5.34) 

- 107 X 10 
4 

3 (13.3) - 3005 x 102(23,3) 
(26) 
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140 km: a = 3,9 x loo7 - 2 , l  x lo3 ( l3 ,3)  - 2,3 x l o 2  (23.3) + 3e7 4 

160 km: a4 = 1,15 x loo7 - 1,34 x 10 3 (13,3) - 40 (23,3) 

3 220 kmt  a4 + 0,1 = 0,65 x - 1,g x 10 (13,3) 2 

expressing t h e  condition t h a t  t h e  NO* loss rate m u s t  equal the  sum of the 

N2 and 0 
+ + formation rates less the  pr inc ipa l  loss rates fo r  these ions 

other than NO+ formation. The values of (,21,4) and (21 , l )  which are per- 

mit ted at three a l t i t udes  130, 160 and 220 km are p lo t t ed  as functions of 

(12,4) i n  Figo 1. (13,3) i s  t reated as a parameter and (23.3) i s  taken 

t o  have the value 2 x cm /see, From these curves it w i l l  be seen 3 

t h a t  at 130 km it i s  possible t o  explain the ionospheric data with t he  

reaction rates obtained i n  the laboratory except t h a t  (21,4) must be of 

the order of 5 x cm 3 /see i f  a l l  of the other rates have t h e i r  labora- 

t o r y  values, considering a l l  of t h e  experimentai uncertaint ies  this has 

t o  be taken as an excel lent  accord between ionospheric and laboratory 

measurements e 

The set of rates 

(21.4) = 502 x cm3/sec 

(12,b) = 4 x cm3/sec 

(23,3) = 2 x cm 3 /sec 

(13,3) = 4 x log1' cm 3 /sec 

(32,k) = 4 x cm 3 /sec 

(53.4) = 5 x log1' cm3/sec 

(21,1) = 6 x cm3/sec 

then determine the  recombination coe f f i c i en t  s 
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o 4,6 x loo7 + 1015 x lo2 (34.4) u4 
u = 1,6 x 0 80 (34.4) 

3 
St 335OKo 

As the a l t i t ude  and temperature increase it is apparent t ha t  the 

data c a l l  f o r  a large var ia t ion i n  some of t h e  reaction rates If the 

ionospheric measurements are va l id  and i f  photons and the i r  secondaries 

are the  only sources of ionization, The upper l i m i t s  t o  various ra tes  

a t  220 km are 

All of these are less 

represented at 220 km 
+ 

t i o n  by u t o  t h e  N2 2 

than the values a t  300°a I n  Fig,  1 the  case 

is  f o r  t he  l imiting case of negl igible  contribu- 

loss rate. It i s  c l ea r  t h a t  even under such an 

extreme circumstance (a2 < 2 x lom8 cm3/sec) both (21.4) and (12.4) must 

decrease considerably from the values at 300°K unless (13,3) has been 

reduced t o  less than 

3 x 

3 x 

5 x 

(whereupon (21.4) would be about 3 x 10 

a high value f o r  0' removal by charge exchange wi th  0 

imply t h a t  O4 replenishment through charge exchange of N2 w i th  0 (21.1) 

must be faster than 

3 cm /seta Even a modest decrease i n  (13.3) t o  

cm3/sec would e n t a i l  a decrease i n  (21.4) t o  at most 

cm3/sec (accompanied by a decrease i n  (12.4) t o  about 

cm /sec) o r  a decrease in  (12.4) t o  a t  most 2 x 3 3 cm /sec 
-12 3 cm /set), In any case such 

a t  220 km would 2 
+ 

cm 3 /sec, i a e o  that  (21.1) must increase rapidly 
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w i t h  temperature, 

of the  order of 

This r e s t r i c t i o n  would be even m 

3 cm /see, 
.. 1 

re severe i f  

To permit (13.3) t o  be 4 x lo-'' cm5/sec and (1.24) t o  be 
3 8 x c m  /see at  920'K as some laboratory experiments suggest 

were ? 

(provided t h e  states of ions and molecules are t h e  same i n  the laboratory 

and the ionosphere and the  cross sections do not o s c i l l a t e  between 0,25 e V  

and 1 eV) would mean t h a t  conditions (25) and (13) have t o  read 

and 

(31) (21.1) = 17 x loo1' cm 3 /see 

t 

I 

I 

It is  d i f f i c u l t  t o  believe tha t  t h e  rocket measurements of ion and neut ra l  

dens i t ies  and the  calculat ion of ionization r a t e s  could accumulate e r ro r s  

of t h e  order of 600%~ It should be recognized that the d i f f i c u l t i e s  con- 

f ront ing  acceptance of a rate of 0' removal as fast as 8 x cm 3 /sec 

at 220 km are really a consequence of t he  f a c t  t h a t  Of has become the  magor 

ion at  that  a l t i t ude ,  

absurd condition (30) are confirmed by op t i ca l  observations of t h e  3914 A 

+ 
And t h e  low N2 dens i t ies  which would lead t o  t h e  

0 

Thus although t h e  conditions at 140 km and 160 km would t o l e r a t e  

a fairly large range of possible temperature var ia t ions ,  (pa r t i cu la r ly  i f  

f ac to r s  of two uncertaint ies  i n  observational parameters are kept i n  mind) 

it i s  d i f f i c u l t  t o  avoid the  conclusion tha t  at 220 km and 1000°K (13.3) 

(12,4) and (21.4) must be considerably less than at 300°, Only (21.1) 

might be larger. The results are not s ens i t i ve  t o  the  v d u e  of (23.3) at 

t h e  higher a l t i t u d e s  
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To attemt a quant i ta t ive evaluation requires t h a t  a2 be known at 

220 km where t h e  electron temperature is probably i n  excess of 2000°K, 

The only way t o  estimate t h i s  coefficient i s  t o  compute values of a4 

and a3 at lower a l t i t u d e s  where a l l  rates are insens i t ive  t o  a2 and then 

assume tha t  t he  temperature dependence set i n  evidence prevai ls  a l l  the  

way t o  2000°K0 From the extrapolated values of ah and a 3 
at 220 km i s  determined from Eq, (211, 

the  value of a2 

According t o  Eqs, (26-29) ab surely decreases rapidly with electron 

temperature, A spec i f ic  temperature var ia t ion may be determined by assum- 

ing  some var iat ion of (13,3) with a l t i t ude  s t a r t i n g  at 4 x cm 3 /see 

at 130 km and computing a4 from (26-291, 

which (13.3) ends up respectively a t  3 x 

0,7 x 

i n  Fig. 2a 

evident t h a t  a 

For four d i f fe ren t  models i n  

2 x 1 O w 1 l 0  1 x l0'l1 and 

cm3 see at 220 km the resu l t ing  var ia t ion i n  a4 and a is shown 

The point p lo t ted  a t  220 km are r ea l ly  f o r  a4 + Ool a2e 
3 

It i s  

alone tends t o  follow a power l a w  dependence on Te some- 4 
wuere V I ~ W I ~ U  'i' 

--I..? --i --le6 __ - -  # - a  -, 
LUlU 'i' Y ~ X  rGP. iGijr  \is,ji is assumed to decrease - -L- -  -_- --^-- 

t he  more rapidly a4 decreases w i t h  temperature, 

changes from 4 x 

Only the case i n  which (13.3) 

3 cm / sec at 130 km t o  0,7 x cm3/sec produces 

something close t o  a smooth power l a w  var ia t ion i n  a3 as w e l l  as a 

t h i s  case ah extrapolates t o  0,3 x 

In  

cm3/sec at 220 km, from which it 
4 O  

would follow that  a2 i s  2.1 x loo7 cm 3 /see there  and g i s  0,33 x loo7 cm 3 /see, 
3 

2 as Tgl and a as T -1, 43 

For t h f s  kind of variation of (13,3) with a l t i t ude  the  range of 

permissible values of (21,b). (21,l) and (12 (4) can be determined (even 

at 220 km taking u t o  be 2,l x lom7 cm /sec there) ,  

l i m i t s  as well  as one sample possible var ia t ion are shown i n  Fig, 3 for t h i s  

caseo 

' a3 4 a would vary then as T-" 2 0 

3 The extreme avai lable  
2 

The results show t h a t  both (21,4) and (12,4) decrease rather sharply 



w i t h  increasing temperature. 

decrease i n  (21.4) w i l l  be minimized, although it is s t i l l  a t  least 

If (21,l) rises w i t h  temperature the 

tenfold,  while t h a t  of (12.4) is maximized, 
+ 

Any increase i n  the rate at  which 0’ is  converted i n t o  O2 at 

high a l t i t ude  t o  conform t o  a slow decrease o r  an increase of (13,3) with 

temperature w i l l  result i n  much more dramatic temperature var ia t ions i n  

(12.41, (21.4) and, as already noted, the  recombination coeff ic ient  aha 

For example i f  (13.3) w e r e  3 x 

be 8 x 

range of (12,4)(2+4) and (2l,l) would be as indicated f o r  t h i s  case i n  

cm3/sec at 220 km a4 + 0,1 a would 2 
cm3/sec, a? would be 9,5  x loo8 cm3/sec and the  possible 

Fig, 1, The largest possible value of(lp4)would be 2,1 x cm 3 /8ec, 

Basically the  reason fo r  t h i s  result i s  t h a t  the production rate of O+ 

i s  so low and i t a  density so high t h a t  a high rate of removal by charge 

t r ans fe r  t o  0 constrains the  auxiliary production of 0 from N, (21.1) 

t o  be very high and the loss rate i n  NO (It a l so  

+ + 
2 

+ production t o  be low, 
r 

.leacis t o  so much 0 proauction tiiat tiie reconi4iiati.011 c t e i f i c i e n t  a fo r  

O2 must be high and those f o r  NO and N2 low,) In  turn t h e  high rate 
2 3 + + + 

+ + 
of N2 

N2 

loss i n  N2 , 0 charge t ransfer  leaves no room fo r  a high rate of 
+ + loss i n  the N2 , 0 interchange reactiona 

To double t h e  ion production rates at 220 km would permit (13.3) 

t o  be of the  order of 4 x 10”’ cm 3 /sec, (21,h) of t h e  order of 2 x 

cm 3 /sec but s t i l l  would leave (12,4) no higher than cm 3 /sec, Thus 
3 values f o r  (12,4) of t h e  order of 8 x 

combined with values of (13.3) well i n  excess of 10 

cm /sec at 1000° especially 
-11 3 cm /sec would 

pose a very serious dilemma implying as they do t h a t  the calculated 0’ 

production r a t e  i s  an order of magnitude too low o r  tha t  0 i s  a minor + 

ion i n  the F2 region, 



1 4  

i 

+ In  passing it m a y  be noted tha t  t o  argue that  because the  NO 

+ density follows the N2 density above 160 km the reaction between N2 

0 cannot be important i n  forming NO 

and 

is  based on several  assumptions ., +(9) 

For one thing the poss ib i l i t y  that the reaction rate coeff ic ients  are 

temperature dependent could mean tha t  t h i s  react ion fs important i n  one 

a l t i t ude  regime and not i n  another, For another i f  

t h e  NO+ density w i l l  follow N 

cumstance tha t  (12.4) and a 

region where ion temperature and electron temperature are changing i n  

rad ica l ly  d i f fe ren t  fashions wi th  a l t i tude ,  

density only under t h e  for tu i tous  c i r -  
~ - 2 

have the same a l t i t u d e  dependence i n  a 4 

4. THE IONOSPmRIC CONDITIONS:  N I G H T  TIME 

The r a t i o  of the day t o  the night densi t ies  of ionic  species 

measured i n  the  NRL experiments i s  displayed i n  Table 2, Above 200 km 

a most remarkable result is t h a t  which shows t h e  presence of an ion of 

mass 28 some 2 x 10 seconds after sunseto and i s  

atmospheric i t s  persistence can be explained but only on the basis of 

an i n f l u x  of Ne 

is removed too rapidly by ion molecule reactions and dissociat ive recom- 

binat ion Judging by i ts  low daytime dens i t ies  t o  decay by a f ac to r  of 

only 50 i n  2 x 10 seconds i f  these same processes are act ive at night 

and Q i s  zeroo This slow decay would demand a decay constant of only 

5 x l oo4  sec'' which would require 

4 + 
If t h i s  ion is N2 

+ + either through transport  o r  through ionization, N2 

4 

2 

(32) 
-4 

[ (21,4)  + (21,111 0 + [(23,3) + (23,411 O2 + a2 Ne = 5 x i o  



I '  

or  
-12 

[(21,4) + (21,19 + 3 x loa2 [(23,3) + (23,411 + 2 x loa5 a2 = 10 
(33) 

where, i n  t he  daytime at 220 km 

-10 (21,4) + (21.1) + 4,4 x 10'2[(23,3) + (23,b)I + 5 0 2  x 10.' a = 1,8 x 10 2 

a fac tor  of 200 higher than t h e  nocturnal requirements, 
+ 

What seems t o  be needed i s  a production of N2 ions by some 

mechanism at a rate 2 x lom2 times the  daytime rate, or  

&2 (night)  = 6 ion  pairs/cm3 seco 

Comparable ionization rates f o r  0 and O2 are a l so  required t o  account f o r  

t h e  O+, O2 and NO densi t ies  i n  t h e  F regione If diffusion i s  neglected 

the  r a t i o  of 0 t o  N densi t ies  in  the  steady state i s  given by 

+ + 
+ + 

2 

This r a t i o  is  observed t o  increase by a factor  of 7 from night t o  day while 

N changes by a fac tor  of 100, Q and Q are equal during the  daytimeo If 

it i s  assumed t h a t  &2 is twice as l a rge  as Q1 at night - as it would be f o r  

e lectrons of a f e w  hundred electron vol t s  -- then what is  required t o  explain 

the  diurnal var ia t ion i n  the  O+/N: r a t i o  i s  

e 1 2 



3 3 Since Ne i s  5 x 10 electrons/cm t h e  requirement becomes 

a = 5 x log6 (21.4) 0 + 1,l x loo5 (21.1) 0 + 5 x loo6 (23.3) O2 2 

o r  

(37) 3 a = 3.7 x 10 (21,4) + 8,2 x l o 3  (21,l)  + 1,7 x lo2 (23.3) 2 

If the night t i m e  temperature a t  220 km w a s  of t h e  order of 750' 

then there are compatible values of a2, (21,4) and (21.1) i n  Figs, 2 and 3 

sa t i s fy ing  t h i s  requirement. For example 

* 2,6 x log7 cm 3 /sec 
a2 

(21.4) 3 4 x cm3/sec 

at  750'. With such rates it is the decreased electron density coupled 

w i t h  a higher ionization efficiency fo r  N2 than for  0 which could account 

for  t h e  high r a t i o  of N2 t o  0' at night,, 
+ 

+ + + 
O2 and NO exhibit an even grea te r  persistence than  N2 (and O+) 

+ 
at 220 km, 

on 0' and N + but decay by dissociative recombination involving t h e  reduced 

electron densi t ies  at night,  

This may be a consequence of the fac t  t h a t  both NO+ and O2 feed 

2 

(13.3) 0 ' 0 0 ~  + (23.3) N2+"02 + Q3 
(38) 

+ o2 = 
a N + (32.4) N2 + (34,4) NO 3 e  

+ +  
Since 0 /N2 is of the order of 60 at night the first term i n  the numerator 

w i l l  dominate the  second unless (13.3) < <  loo1 (23,310 This term changes 

by a fac tor  of 360 from night t o  day while Ne only changes by two orders 



of magnitude. The increase i n  (13,s) i s  by about the  same factor  as that 

t 

i n  a Thus a change 

expected, provided Q3 

two production terms. 

Similarly fo r  

3" 

NO+ = {(12,4) O+'N2 + 

+ 
i n  the  O2 

i n  the day i s  considerably smaller than the other 

density by a fac tor  of four i s  t o  be 

In fact  it is less than about 20% of these terms, 

NO+ 

A change by a fac tor  of 6 from night t o  day i n  the presence of a hundred 

fo ld  increase i n  Ne could be a consequence of t h e  dominant ro l e  of t he  

first term i n  t h e  numberator, The O+ density increases by a fac tor  of 

360 while the  rate (12,4), according t o  the  temperature var ia t ion adopted 

i n  Fig. 3, is cut i n  ha l f  going from night t o  day, leading t o  a 180 fo ld  

increase i n  the  numerator, 

of magnitude whvile ah Is cut  down by ti factcjr of l/So 

increase i n  NO+ density by a factor of 9 which is  cer ta in ly  close enough 

t o  6 f o r  the purpose of t h i s  paper, Qual i ta t ive ly  the  greater amplitude 

of the  NO+ variat ion is  a consequence of t h e  f a c t  t h a t  a 4  i s  more strongly 

temperature dependent than a 

On the other hand, Ne increases by two orders 

Tnis gives an 

3 O  
Hence, without regard t o  the e f f ec t  of diffusion i n  control l ing 

+ 
ion dens i t ies  i n  t h i s  region, the  28+ peak can be explained as an N2 

peak and the  other  ion densi t ies  also accounted fop on the same model 

of reaction rates and t h e i r  temperature dependence used i n  the  daytime 

i f  the re  is  a nocturnal ion source producing something between 5 and 10 

3 ion pairs/cm sec a t  220 km, On the basis of 35 e V  per ion p a i r  t h i s  

c a l l s  for  an energy deposition of only about 3 x ergs/cm3 sec o r  



2 about 2 x loo3 ergs/cm sec i f  t h e  lower l i m i t  of ionization from t h i s  

source i s  at 180 km, This  is below the  acceptable upper l i m i t  according 
, 0 

t o  arguments by Dalgarno, '22' It would result i n  a 3914A emission rate of 

3 about 1.5 x photons per cm per sec o r  about lop1 Raylefghs, To 

penetrate only t o  180 km electrons would need a f e w  hundred electron vol t s  

of k ine t i c  energy i n i t i a l l y ,  

I n  t h e  region around 160 km on the  other hand it i s  possible t o  

account f o r  t h e  nocturnal densit ies on t h e  basis of a straightforward 

conversion of 0 and N2 t o  O2 and NO and subsequent dissociat ive recom- 

bination, No ionization source i s  required, In  2 x 10 seconds the 

electron density i s  reduced from about 1,5 x 10 

cm , From the  relat ionship 

+ + + + 
4 

5 per cm3 t o  about 500 per  

3 

1 1 
- = - + a t  
Ne N (0) 

e 

t h i s  decay requires an average recombination coeff ic ient  

(40 )  

This agrees very w e l l  w i t h  the daytime condition 

(42) 1,6 a4 + a = 2 , l  x lo-' cm 3 /sec 
3 

TR terms of the  behavior of the  individual ionic  species the  
+ 

decay of O2 follows t h e  l a w  

(43) 

( 4 4 )  
If 



c 

+ 
the  solut ion of the d i f f e ren t i a l  equation f o r  O2 is 

+ 4 3 2 9 4 1  N2 t 
+ o2 ( 0 1  e - 

a3/a O2 - 
(1 + a N,(O) t) 

( 4 5 )  

4 + In  2 x 10 seconds O2 

so it is required t h a t  

i s  down by a f ac to r  of 440 from i ts  i n i t i a l  value, 

a3/a 
300 exp [2  x 1014 (32,k) 1 = 440 

Hence unless a << a it i s  requi red  that a t  160 km 3 

If (32,4)  i s  10-l~ cm 3 /sec, i s  0 ~ 7 3  x 10-7 c m  3 /set, me upper l i m i t  a3 
on a i s  1,07 x cm3/sec, 3 

For NO' 

or  

NO' 
+ 

a = .16 a + ,84 a - 10,' cm3/sec 3 4 -  (49) 

If a i s  1.07 x IOm7 cm3/sec, a4 is 1 x lom7 cm 3 /sec If a = 0,73 x loo7 
3 3 

3 cm /sec, 

average nighttime values f o r  a 

i s  1,05 x loo7 cm3/seca According t o  t h e  adopted model the a4 
and a4 at t h i s  a l t i t u a e  are about 3 

0.8 x 10" and 1 , 4  x lom7 cm 3 /sec, 

On the  other hand, at lower a l t i t udes  t h e  curious f ac t  is  t h a t ,  

decays i n  approximately the same fashion f r o m  160 km t o  + whereas 0 

130 km, the  NO+ density remains high below 140 km and exhibits a peak 

near  130 km, 

2 

The day t o  night r a t i o  o f  PO+ dens i t ies  decreases a l l  t h e  
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way from 160 k m t o  below 130 km, Although it i s  possible t o  argue t h a t  

t h i s  behavior indicates  t h a t  a4 increases with increasing temperature the  

behavior of a 4  i n  the  daytime does not show such a tendency -- qui te  the  

contraryo 

sa t i s fac tory ,  

To postulate a source of ionization spec i f ic  t o  NO i s  not 

For one thing no adequate mechanism seems t o  ex i s t ,  The 

ionizat ion rate required i s  given by the relat ionship 

2 Q4 = a4 Ne = 10 ion pairs/cm3 sec 

3 i f  a4 i s  5 x cm /sec, Nightglow Lyman a can ionize NO which has 

a density i n  t h i s  region of the  order of 10 7 per cm3 according t o  Barth, (23) 

However, calculation shows tha t  only 3 x loo2 ions/cm 3 would be produced 

every second by t h i s  sourcea No meteoric ions can charge exchange with 

NO at low energyo Furthermore, there is a l so  too much O2 

f o r  on the  basis of simple nocturnal decay by recombination, 

+ t o  be accounted 

As Holmes 

e t  a1 have pointed out,  i n  the presence of an electron density greater 

150 ions/cm 3 observed 6 hours a f t e r  sunset i f  a i s  o f t h e  order of 
3 

loo7 cm3/sec and a l l  Qi, except perhaps Q4, have vanished, For then 

which give 

ana 

+ 
O2 + 

a3 '2 O N e  
I-= 

d t  

t 

2 N  N 
e l  e0 

-kt - 'el + 2 Nel e -kt N e ( % )  = 
NeO ( 1-e 



where 

21 

Nel = 

and 

k = 2 6 = 2 ~  a .  
e l  

These decw laws show tha t  

-20 + + 
O2 = O2 (Ole 

( 5 5 )  

( 5 6 )  

(57) 

4 at  2 x 10 seconds. Hence $t appears necessary t o  postulate  a source 

of ionizat ion below 140 km which can produce O2 as well as NO+ ions, + 

The steady s t a t e  versions of Eqs, (1-4) at 130 km ares 

1.1 x 1010[10(12,4) + (13,311 

7 x 10' a3 + 1.7 x 1013(32,4) + 1.5 x 10 9 (34,4)  = Q3 + 1,l x 10 10 

(60) 
+ 

[(23,3) N2 + (13,3)0+3 

where all c lear ly  t r i v i a l  terms have been eliminated, 

Taking the  same set of rate constants t h a t  were used f o r  t he  
+ 

daytime ionosphere at 130 km these condikLons on the &i and t he  N2 

and 0 + densi t ies  m e y  be writ ten as 

[6 + (23,3) x H; = Q2 
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I 

0.9 + 1,s x 10 9 (34,4) = Q3 (23.3) lolo N2+ + 

+ + 
1 = 0,04 0 + N2 

A. 

,4 o+ (64) 

The NT contribution has been neglected but would need t o  be restored i f  

N is  comparable t o  N2 i n  density, 
+ + 

If charge t r a n s f e r  between 02+ and NO does not make an appreciable 

contribution t o  O2 + loss and NO + gain and the r a t e  of N2 + t r ans fe r  t o  

O2 is of the  order of 10-l' cm3/sec it is  d i f f i c u l t  t o  reconcile these 

conditions wi th  reasonable r a t i o s  of  primary production rates 

leave no room f o r  Q 

the  ion molecule react ionso 

They 
+ i n  (60). that is f o r  any O2 production other  than 3 

Considering the uncer ta in t ies  in the  data 

t h i s  discrepancy cannot perhaps be regarded as grave,, 

t h e  observations at t h e i r  face value, it would be more comfortable i f  

t he  O2 , NO charge exchange should t u r n  out t o  have a rate of t h e  order 

of 5 x 10-l' cm3/sec at 300'K. 

would be satisfied by 

However, taking 

+ 

I n  t h a t  case the  relat ionships  (62-65) 

from (611, 

from ( 5 8 ) .  

from (591, 

and 

from (601, 

-1 Q3 2 0,3 cmv3 sec  
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Where the  r a t i o s  of t he  N2* 0 and O2 dens i t ies  a r e  

10:2,2:1 

the  corresponding primary ion production rates are  

ind ica t ing  twice as great  an eff ic iency f o r  N2 ionizat ion as t h a t  f o r  

0 and00 
2 

As was the  case above 180 km this ionizat ton could be by electrons,  

t h i s  time wi th  k i lovol t  energies,  and the  exc i ta t ion  of t h e  nightglow 

first negative band system would remain below observable l i m i t s  

5 o CONCLUSIONS 

Recent maas spectrometric determinations of the abundance of 

ionic  sFecies i n  the ionosphere are consis tent  wi th  laboratory 

measurements of ion-molecule reaction rates and recombination coeffi-  

c i en t s  at 300°K. As the a l t i t u d e  and temperature increase the observa- 

t i o n s  ca l l  f o r  decreasing r a t e  coeff ic ients  i n  all important cases 

except,  perhaps, the r a t e  f o r  N2 e 0 charge t r ans fe ro  

it appears t o  be necessary t h a t  the dissociat ive recombination coeffi-  

+ I n  p a r t i c u l a r  

- l o b  f 002 
while t h a t  fo r  0 + decrease + 

2 c ien t  f o r  NO decrease as Te 
+ 

more slowly, 

very slowly with temperature,, The rates f o r  N2 0 and 0 N2 ion 

atom interchange and fo r  0 e 0 

temperature t o  be compatible w i t h  the ionospheric data, 

It is  probable that  t h e  coeff ic ient  f o r  N2 decreases 
+ + 

+ charge t r a n s f e r  all m u s t  decrease w i t h  
2 

The m a s s  spectrometric data f o r  t he  nieht-time ionosphere are 

consis tent  with the  sane set of reaction rates w i t h  their  tearpclar&ar?e 
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, 

dependences deduced from the  daytime observatfons , 

true only i f  weak primary ionization sources a re  present,  

perhaps involving electrons of a few hundred electron vo l t s ,  causes ioni-  

However, th is  fs 

One of these, 

zation at a rate of 5-10 ion pairs/em5 sec  above 180 km, 

again possibly e lec t ronic ,  would produce about 10 ion pafrs/cm sec near 

130 km at  night,  

s ion of O2 

The other  source, 

3 

In the  la t ter  case f t  appears l i ke ly  t h a t  the  conver- 
+ + t o  NO by charge t ransfer  is a very e f f i c i e n t  process, 

These conclusions are based on a recalculat ion of the ionizat ion 

rates by photons and photo-electrons using recent information concerning 

the  composition of the  neut ra l  atmosphere, 

primary r a t e  would be most desirable, 

A d i rec t  measurements of t h i s  
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Altitude 
km 

130 

140 

160 

220 

Altitude 
km 

130 

140 

160 

220 

Altitude 
km 

130 

140 

160 

220 

Table 1 

D a y t i m e  Ionic Densities i n  cmo3 

Ionization Ra es 
i n  ion pafrs/cm f sec 

&3 

N e  ut ra l  Dens it ies 
i n  garticles/cm3 

202 x 1o1O 1.1 x l o l l  i,i x lolo 1,6 x i o 7  335' 

1.2 X do 4,3 X do 3,9 lo9 440' 

Table 1, Ionospheric and Atmospheric Data i n  the Daytime, Measured 

densit ies  for  diatomic ions have been multiplied by a factor of 1075, 

are for 30' solar elevation, 



Table 2 

Nighttime Ionic Densities and Ratio of D a y  t o  Night Densities i n  CIU'~ 

Altitude + + 
km (1) o+ Ratio (2) B I ~  Ratio ( 3 )  o2 Ratio (4) NO+ Ratio 

1,6x102 400 5,2X1O3 9 130 

140 lO4x1O2 440 4 ~ 1 0  14 

160 1. 5x103 45 1 0 4 ~ 0 2  440 8 x102 115 

230 1,8fio3 360 35 50 2.7fi03 4,l 3 x103 5.9 
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FIGURE CAPTIONS 

+ 
Fig, 1, Reaction r a t e s  f o r  N + 0 .* NO+ + N and N2+ + 0 + 0' + N2 

2 
p lo t t ed  against  the  rate f o r  O+ + N2 * NO + + N f o r  various 

values of ( 13p3) 

i n  un i t s  of 

the rate of 0' + 0 + 0 + + 0 expressed 2 2  
cm 3 /sec, 

Fig. 2. Required dependence of various reaction rates on gas temperature 

f o r  t he  indicated var ia t ion of (13p3) w i t h  temperature, 

consistent curves are labeled w i t h  the  same letters, 

Self  

Fig, 3, Dependence of recombination coef f ic ien ts  on electron tempera- 

ture fo r  various assumed values of (13,3) at 220 km expressed 

i n  uni t s  of cm3/sec, High temperature point is  really 

a4 + 0.1 a 

also shown, 

Power law extrapolations of rate coeff ic ients  are 
2" 
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